Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
IEEE Rev Biomed Eng ; PP2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2052071

ABSTRACT

Smart healthcare has achieved significant progress in recent years. Emerging artificial intelligence (AI) technologies enable various smart applications across various healthcare scenarios. As an essential technology powered by AI, natural language processing (NLP) plays a key role in smart healthcare due to its capability of analysing and understanding human language. In this work, we review existing studies that concern NLP for smart healthcare from the perspectives of technique and application. We first elaborate on different NLP approaches and the NLP pipeline for smart healthcare from the technical point of view. Then, in the context of smart healthcare applications employing NLP techniques, we introduce representative smart healthcare scenarios, including clinical practice, hospital management, personal care, public health, and drug development. We further discuss two specific medical issues, i.e., the coronavirus disease 2019 (COVID-19) pandemic and mental health, in which NLP-driven smart healthcare plays an important role. Finally, we discuss the limitations of current works and identify the directions for future works.

2.
Appl Soft Comput ; 120: 108691, 2022 May.
Article in English | MEDLINE | ID: covidwho-1729549

ABSTRACT

The worldwide outbreak of coronavirus disease 2019 (COVID-19) has triggered an unprecedented global health and economic crisis. Early and accurate forecasts of COVID-19 and evaluation of government interventions are crucial for governments to take appropriate interventions to contain the spread of COVID-19. In this work, we propose the Interpretable Temporal Attention Network (ITANet) for COVID-19 forecasting and inferring the importance of government interventions. The proposed model is with an encoder-decoder architecture and employs long short-term memory (LSTM) for temporal feature extraction and multi-head attention for long-term dependency caption. The model simultaneously takes historical information, a priori known future information, and pseudo future information into consideration, where the pseudo future information is learned with the covariate forecasting network (CFN) and multi-task learning (MTL). In addition, we also propose the degraded teacher forcing (DTF) method to train the model efficiently. Compared with other models, the ITANet is more effective in the forecasting of COVID-19 new confirmed cases. The importance of government interventions against COVID-19 is further inferred by the Temporal Covariate Interpreter (TCI) of the model.

SELECTION OF CITATIONS
SEARCH DETAIL